
This article was downloaded by: On: 22 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

Synthesis and structural characterization of a diiron propanedithiolate complex $[(\mu - PDT)Fe_2(CO)_5]_2[(\eta - Ph_2PC_5H_4)_2Fe]$ containing a bidentate phosphine ligand 1,1'-bis(diphenylphosphino)ferrocene

Xu-Feng Liu^a; Bang-Shao Yin^b

^a Department of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, China ^b College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China

Online publication date: 20 November 2010

To cite this Article Liu, Xu-Feng and Yin, Bang-Shao(2010) 'Synthesis and structural characterization of a diiron propanedithiolate complex [(μ -PDT)Fe₂(CO)₅]₂[(η ⁵-Ph₂PC₅H₄)₂Fe] containing a bidentate phosphine ligand 1,1'-bis(diphenylphosphino)ferrocene', Journal of Coordination Chemistry, 63: 23, 4061 – 4067

To link to this Article: DOI: 10.1080/00958972.2010.531715

URL: http://dx.doi.org/10.1080/00958972.2010.531715

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis and structural characterization of a diiron propanedithiolate complex $[(\mu-PDT)Fe_2(CO)_5]_2[(\eta^5-Ph_2PC_5H_4)_2Fe]$ containing a bidentate phosphine ligand 1,1'bis(diphenylphosphino)ferrocene

XU-FENG LIU*† and BANG-SHAO YIN‡

 †Department of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, China
‡College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China

(Received 15 August 2010; in final form 22 September 2010)

The reaction of $(\mu$ -PDT)Fe₂(CO)₆ (PDT = SCH₂CH₂CH₂S) with 1,1'-bis(diphenylphosphino) ferrocene in the presence of the decarbonylating agent Me₃NO·2H₂O afforded [$(\mu$ -PDT)Fe₂(CO)₅]₂[$(\eta^{5}$ -Ph₂PC₅H₄)₂Fe] (1) in 80% yield. The new complex 1 was characterized by elemental analysis, IR, and ¹H-(³¹P-, ¹³C-) NMR spectroscopies. The structure of 1 was determined by single crystal X-ray diffraction analysis; the molecule is centrosymmetric and two cyclopentadienyl (Cp) rings reside in a staggered conformation.

Keywords: Diiron propanedithiolate; dppf; Synthesis; Crystal structure

1. Introduction

Diiron propanedithiolate complex (μ -PDT)Fe₂(CO)₆ was prepared either by the reaction of (μ -LiS)₂Fe₂(CO)₆ (generated *in situ* from (μ -S₂)Fe₂(CO)₆ and LiBEt₃H) with BrCH₂CH₂CH₂Br [1, 2], or by the reaction of Fe₃(CO)₁₂ and HSCH₂CH₂CH₂SH [3] as Seyferth's group reported in 1980 and 1987, respectively. Since 1999, diiron propanedithiolate complexes of the type (μ -PDT)Fe₂(CO)_{6-n}L_n (L, ligand), such as (μ -PDT)Fe₂(CO)₄(CN)₂ [4], [(μ -PDT)Fe₂(CO)₅]₂(dppe) (dppe = Ph₂PCH₂CH₂PPh₂) [5], and (μ -PDT)Fe₂(CO)₅(CpFe(CO)₂PPh₂) [6], were obtained from the reaction of (μ -PDT)Fe₂(CO)₆ with various ligands [7–9]. Due to the electron donor properties of ferrocene, we initiated our studies on the reaction of (μ -PDT)Fe₂(CO)₆ with the

^{*}Corresponding author. Email: nkxfliu@yahoo.com.cn

bidentate ligand dppf. Herein, we report the synthesis, characterization, and crystal structure of $[(\mu-PDT)Fe_2(CO)_5]_2[(\eta^5-Ph_2PC_5H_4)_2Fe]$ (1).

2. Experimental

2.1. Materials and methods

All reactions were performed using standard Schlenk and vacuum-line techniques under N₂. Acetonitrile was distilled over CaH₂ under N₂. Me₃NO·2H₂O and other materials were available commercially and used as received. (μ -PDT)Fe₂(CO)₆ [2] and dppf [10] were prepared according to literature procedures. IR spectra were recorded on a Nicolet MAGNA 560 FT-IR spectrometer. ¹H-(³¹P-, ¹³C-) NMR spectra were obtained on a Bruker Avance 500 MHz spectrometer. Elemental analysis was performed by a Perkin-Elmer 240C analyzer.

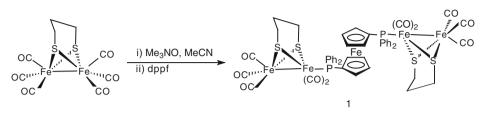
2.2. Synthesis of 1

To a solution of $(\mu$ -PDT)Fe₂(CO)₆ (0.200 g, 0.52 mmol) in MeCN (20 mL), a solution of Me₃NO·2H₂O (0.058 g, 0.52 mmol) in MeCN (10 mL) was added. The mixture was stirred at room temperature for 15 min and then $(\eta^5-Ph_2PC_5H_4)_2Fe$ (dppf) (0.144 g, 0.26 mmol) was added. The new mixture was stirred for 1 h to give a red solution. The solvent was reduced in vacuo and the residue was subjected to TLC separation using CH_2Cl_2 /petroleum ether (v/v = 1:3) as eluent. Collecting the main red band afforded 0.263 g (80%) of 1 as a dark red solid. Anal. Calcd for $C_{50}H_{40}Fe_5O_{10}P_2S_4$ (%): C, 47.28; H, 3.17. Found: C, 46.99; H, 3.44. IR (KBr disc): $v_{C=0}$ 2037 (vs), 1975 (vs), 1926 (vs) cm^{-1} . ¹H-NMR (500 MHz, CDCl₃): 7.52, 7.39 (2s, 20H, 4C₆H₅), 4.30, 4.26 (2s, 8H, 2C₅H₄), 1.69–1.68 (m, 4H, 2SCH₂CH₂CH₂S), 1.54 (s, 8H, 4SCH₂) ppm. ³¹P-NMR (200 MHz, CDCl₃, 85% H₃PO₄): 54.97 (s) ppm. ¹³C-NMR (125 MHz, CDCl₃): 214.40 (d, $J_{P-C} = 10.7 \text{ Hz}$, PFeCO), 209.32 (s, FeCO), 138.41 (d, $J_{P-C} = 41.2 \text{ Hz}$, *i*-PhC), 132.89 (d, J_{P-C} = 10.6 Hz, o-PhC), 129.94 (s, p-PhC), 128.01 (d, J_{P-C} = 9.4 Hz, m-PhC), 80.17 (d, $J_{P-C} = 41.4 \text{ Hz}$, *i*-CpC), 75.02 (d, $J_{P-C} = 10.7 \text{ Hz}$, α -CpC), 73.93 (d, $J_{P-C} = 6.9 \text{ Hz}$, β -CpC), 29.97 (s, SCH₂), 21.70 (s, SCH₂CH₂CH₂S) ppm.

2.3. X-ray structure determination

Single crystals of 1.2CH₂Cl₂ suitable for X-ray diffraction analysis were grown by slow evaporation of CH₂Cl₂/hexane solution at 4°C. A single crystal of 1.2CH₂Cl₂ was mounted on a Rigaku SCX-mini CCD diffractometer. Data were collected at room temperature using a graphite monochromator with Mo-K α radiation ($\lambda = 0.71073$ Å) in the ω - ϕ scanning mode. Absorption correction was performed by SADABS [11]. The structure was solved by direct methods using the SHELXS-97 program [12] and refined by full-matrix least-squares (SHELXL-97) [13] on F^2 . Hydrogens were located using the geometric method. Details of crystal data, data collections, and structure refinement are summarized in table 1.

Empirical formula	$C_{50}H_{40}Fe_5O_{10}P_2S_4 \cdot 2CH_2Cl_2$
Formula weight	1440.10
Temperature (°C)	293(2)
Wavelength (Å)	0.71073
Crystal system	Triclinic
Space group	<i>P</i> -1
Unit cell dimensions (Å, °)	
a	9.5230(19)
b	12.909(3)
С	13.587(3)
α	99.30(3)
β	105.74(3)
γ	101.17(3)
Volume (Å ³), Z	1536.1(5), 1
Calculated density $(g cm^{-3})$	1.557
Absorption coefficient, μ (mm ⁻¹)	1.566
F(000)	728
Crystal size (mm ³)	$0.29 \times 0.26 \times 0.22$
θ range for data collection (°)	2.99-25.10
Limiting indices	$-11 \le h \le 11; -15 \le k \le 15; -16 \le l \le 15$
Reflections collected	8910
Independent reflection	5400 [R(int) = 0.0542]
Completeness to $\theta = 25.10$ (%)	98.6
Data/restraints/parameters	5400/11/359
Goodness-of-fit on F^2	1.033
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0773, wR_2 = 0.1914$
<i>R</i> indices (all data)	$R_1 = 0.1301, wR_2 = 0.2159$
Largest difference peak and hole ($e \text{ Å}^{-3}$)	1.453 and -0.877


Table 1. Crystal data and structure refinements details for 1.2CH₂Cl₂.

3. Results and discussion

3.1. Synthesis and characterization

The synthetic route to 1 is illustrated in scheme 1. Treatment of the starting material $(\mu$ -PDT)Fe₂(CO)₆ with 1 equivalent of Me₃NO·2H₂O in MeCN at room temperature followed by addition of dppf resulted in the formation of 1 in 80% yield.

Complex 1 was characterized by elemental analysis, IR, and ¹H-(³¹P-, ¹³C-) NMR spectroscopies. The IR spectra showed three absorption bands at 2037, 1975, and 1926 cm⁻¹ for its terminal carbonyls and $v_{C=0}$ values markedly shifted to lower frequencies relative to (μ -PDT)Fe₂(CO)₆ (2072, 2033, 1993 cm⁻¹) [14] but very similar to diiron dithiolate complexes with phosphine ligands, such as [(μ -PDT)Fe₂(CO)₅]₂(dppe) (2040, 1982, 1922 cm⁻¹) [5]. The ¹H-NMR spectra displayed two singlets at δ 4.30 and 4.26 ppm for its two Cp ring hydrogens. The ³¹P-NMR spectra have a singlet at δ 54.97 ppm for the two P atoms of dppf, each one coordinated to one Fe of the diiron subsite. In addition, the ¹³C-NMR spectra exhibited a doublet at δ 214.40 ppm with a coupling constant $J_{P-C} = 10.7$ Hz and a singlet at δ 209.32 ppm for its terminal carbonyls, three doublets at δ 138.41, 132.89, and 128.01 ppm and a singlet at δ 129.94 ppm for its Cp ring carbons. The NMR data we obtained were consistent with its symmetrical structure.

Scheme 1. Preparation of 1.

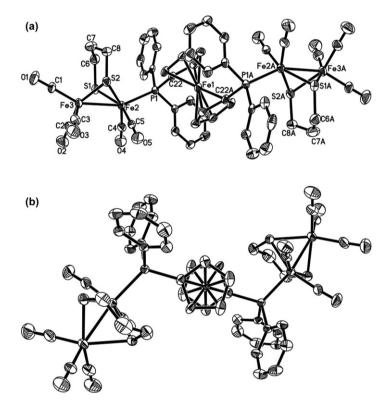


Figure 1. (a) ORTEP view of 1.2CH₂Cl₂ with 30% probability ellipsoids. Hydrogens are omitted for clarity. (b) Top view on the Cp ring.

3.2. X-ray crystal structure

The molecular structure of 1.2CH₂Cl₂ has been unequivocally confirmed by single crystal X-ray diffraction analysis. While the ORTEP and packing view are shown in figures 1 and 2, selected bond lengths and angles are given in table 2. The title complex 1.2CH₂Cl₂ contains two diiron propanedithiolate moieties which are joined through a dppf molecule. This molecule is centrosymmetric with Fe1 as the symmetry center, very similar to the previously reported complexes [Fe₂(μ -SCH₂OCH₂S- μ)(CO)₅]₂[(η^{5} -Ph₂PC₅H₄)₂Fe]

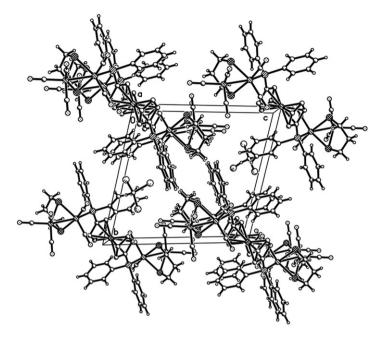


Figure 2. Crystal packing diagram of 1.2CH₂Cl₂ along the *a*-axis.

Table 2. Selected bond lengths (Å) and angles (°) for 1.2CH₂Cl₂.

Fe(1)–C(22)	2.093(7)	Fe(2)-Fe(3)	2.5441(16)
Fe(2) - P(1)	2.264(2)	Fe(3)-S(1)	2.291(3)
Fe(2)-S(2)	2.277(2)	Fe(3)-S(2)	2.293(2)
Fe(2)-S(1)	2.293(3)	C(9) - P(1)	1.845(8)
C(22) - P(1)	1.827(8)	C(15) - P(1)	1.839(7)
C(22)#1-Fe(1)-C(22)	180.0(5)	S(1)-Fe(3)-Fe(2)	56.33(7)
P(1)-Fe(2)-Fe(3)	153.62(8)	S(2)-Fe(3)-Fe(2)	55.88(6)
S(2)-Fe(2)-Fe(3)	56.47(6)	P(1)-C(22)-Fe(1)	134.0(4)
S(1) - Fe(2) - Fe(3)	56.26(7)	C(22) - P(1) - Fe(2)	117.6(3

Symmetry transformations used to generate equivalent atoms: #1:-x+2, -y, -z.

and $[Fe_2(\mu-SCH_2OCH_2S-\mu)(CO)_5]_2[(\eta^5-Ph_2PC_5H_4)_2Ru]$ [15]. The molecular structure also revealed that each [2Fe2S] unit of 1·2CH_2Cl₂ has two fused six-membered rings, in which one six-membered ring C7C8S2Fe2S1C6 has a chair conformation and the other six-membered ring C7C8S2Fe3S1C6 has a boat conformation. Furthermore, each phosphorus of the diphosphine ligand resides in the axial position of the squarepyramidal coordination sphere of Fe2 and Fe2A, consistent with diiron dithiolate complexes substituted by monophosphine ligands [16–19] or by diphosphine ligands, such as $[(\mu-PDT)Fe_2(CO)_5]_2(dppe)$ [5], $[{Fe_2(CO)_5(\mu-PDT)}_2(\mu,\kappa^1,\kappa^1-Ph_2PCH_2N(n Pr)CH_2PPh_2)]$ [20], and $[{Fe_2(CO)_5(\mu-PDT)}_2(\mu,\kappa^1,\kappa^1-Ph_2PCH_2N(Ph)CH_2PPh_2)]$ [20]. The orientation of the phosphine ligands are in opposite positions to the bridgehead C7 and C7A in order to reduce steric repulsion between them, common in diiron azadithiolate derivatives, for example, $[{(\mu-SCH_2)_2N(C_6H_4OMe-p)}Fe_2(CO)_5(PPh_3)]$ [18] and $[(\mu-SCH_2N(4-bromophenyl)CH_2S)Fe_2(CO)_5(PPh_3)]$ [21]. The Fe2–Fe3 bond length [2.5441(16) Å] is longer than (μ -PDT)Fe₂(CO)₆ [2.5103(11) Å] [14] and the analogous diiron dithiolate complexes [22–24], but shorter than those in the structures of natural enzymes *Clostridium pasteurianum* and *Desulfovibrio desulfuricans* (2.55–2.62 Å) [25, 26]. All carbons of carbonyls are about 1.79 Å apart from the iron atoms with no differences in their equatorial and axial positions. In addition, the disordered CH₂Cl₂ could give rise to the relative high R_1/wR_2 (all data) 0.1301/0.2159 for the structure of **1**.

As can be seen in figure 1(b), the top view on the Cp ring shows that two Cp rings of ferrocene adopt a staggered conformation.

As shown in figure 2, there are no non-covalent interactions in the crystal packing diagram of $1.2CH_2Cl_2$ along the *a*-axis.

4. Conclusions

Complex $[(\mu-PDT)Fe_2(CO)_5]_2[(\eta^5-Ph_2PC_5H_4)_2Fe]$ was prepared by carbonyl substitution from $(\mu-PDT)Fe_2(CO)_6$ and dppf in high yield. The title complex was characterized by various spectroscopic techniques as well as by X-ray crystallography.

Supplementary material

CCDC 787958 contains the supplementary crystallographic data for this article. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

Acknowledgments

This study was supported by the start-up foundation of Ningbo University of Technology.

References

- [1] D. Seyferth, R.S. Henderson, L.C. Song. J. Organomet. Chem., 192, C1 (1980).
- [2] D. Seyferth, R.S. Henderson, L.C. Song. Organometallics, 1, 125 (1982).
- [3] D. Seyferth, G.B. Womack, M.K. Gallagher, M. Cowie, B.W. Hames, J.P. Fackler Jr, A.M. Mazany. Organometallics, 6, 283 (1987).
- [4] A.L. Cloirec, S.P. Best, S. Borg, S.C. Davies, D.J. Evans, D.L. Hughes, C.J. Pickett. Chem. Commun., 2285 (1999).
- [5] W. Gao, J. Ekström, J. Liu, C. Chen, L. Eriksson, L. Weng, B. Åkermark, L. Sun. *Inorg. Chem.*, 46, 1981 (2007).
- [6] L.C. Song, C.G. Li, J.H. Ge, Z.Y. Yang, H.T. Wang, J. Zhang, Q.M. Hu. J. Inorg. Biochem., 102, 1973 (2008).
- [7] T. Liu, M.Y. Darensbourg. J. Am. Chem. Soc., 129, 7008 (2007).
- [8] S. Ezzaher, J.F. Capon, F. Gloaguen, F.Y. Pétillon, P. Schollhammer, J. Talarmin. *Inorg. Chem.*, 48, 2 (2009).

- [9] B.E. Barton, M.T. Olsen, T.B. Rauchfuss. J. Am. Chem. Soc., 130, 16834 (2008).
- [10] J.J. Bishop, A. Davison, M.L. Katcher, D.W. Lichtenberg, R.E. Merril, J.C. Smart. J. Organomet. Chem., 27, 241 (1971).
- [11] G.M. Sheldrick. SADABS, A Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany (1996).
- [12] G.M. Sheldrick. SHELXS-97, A Program for Crystal Structure Solution, University of Göttingen, Germany (1997).
- [13] G.M. Sheldrick. SHELXL-97, A Program for Crystal Structure Refinement, University of Göttingen, Germany (1997).
- [14] E.J. Lyon, I.P. Georgakaki, J.H. Reibenspies, M.Y. Darensbourg. Angew. Chem. Int. Ed., 38, 3178 (1999).
- [15] L.C. Song, Z.Y. Yang, H.Z. Bian, Y. Liu, H.T. Wang, X.F. Liu, Q.M. Hu. Organometallics, 24, 6126 (2005).
- [16] Z. Zhao, M. Wang, W. Dong, P. Li, Z. Yu, L. Sun. J. Organomet. Chem., 694, 2309 (2009).
- [17] F.I. Adam, G. Hogarth, S.E. Kabir, I. Richards. C. R. Chim., 11, 890 (2008).
- [18] L.C. Song, J.H. Ge, X.G. Zhang, Y. Liu, Q.M. Hu. Eur. J. Inorg. Chem., 3204 (2006).
- [19] L.C. Song, X.F. Liu, J.B. Ming, J.H. Ge, Z.J. Xie, Q.M. Hu. Organometallics, 29, 610 (2010).
- [20] N. Wang, M. Wang, J. Liu, K. Jin, L. Chen, L. Sun. Inorg. Chem., 48, 11551 (2009).
- [21] S. Ott, M. Borgström, M. Kritikos, R. Lomoth, J. Bergquist, B. Åkermark, L. Hammarström, L. Sun. Inorg. Chem., 43, 4683 (2004).
- [22] U.P. Apfel, C.R. Kowol, Y. Halpin, F. Kloss, J. Kübel, H. Görls, J.G. Vos, B.K. Keppler, E. Morera, G. Lucente, W. Weigand. J. Inorg. Biochem., 103, 1236 (2009).
- [23] M.K. Harb, U.P. Apfel, J. Kübel, H. Görls, G.A.N. Felton, T. Sakamoto, D.H. Evans, R.S. Glass, D.L. Lichtenberger, M. El-khateeb, W. Weigand. *Organometallics*, 28, 6666 (2009).
- [24] W.G. Wang, H.Y. Yang, G. Si, C.H. Tung, L.Z. Wu. Dalton Trans., 2712 (2009).
- [25] J.W. Peters, W.N. Lanzilotta, B.J. Lemon, L.C. Seefeldt. Science, 282, 1853 (1998).
- [26] Y. Nicolet, C. Piras, P. Legrand, C.E. Hatchikian, J.C. Fontecilla-Camps. Structure, 7, 13 (1999).